Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; : 172413, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38631632

ABSTRACT

Nanotechnology is a new scientific area that promotes unique concepts to comprehend the optimal mechanics of nanoparticles (NPs) in plants under heavy metal stress. The present investigation focuses on effects of synthetic and green synthesized titanium dioxide nanoparticles (TiO2 NPs and gTiO2 NPs) against Cr(VI). Green TiO2 NPs have been produced from plant leaf extract (Ricinus communis L.). Synthesis was confirmed employing an array of optical spectroscopic and electron microscopic techniques. Chromium strongly accelerated H2O2 and MDA productions by 227 % and 266 % at highest chromium concentration (60 mg/kg of soil), respectively, and also caused DNA damage, and decline in photosynthesis. Additionally, anomalies were observed in stomatal cells with gradual increment in chromium concentrations. Conversely, foliar applications of TiO2 NPs and gTiO2 NPs considerably mitigated chromium stress. Sunflower plants treated with modest amounts of green TiO2 NPs had significantly better growth index compared to chemically synthesized ones. Principal component analysis highlighted the variations among photosynthetic attributes, oxidative stress markers, and antioxidant defense systems. Notably, gTiO2 supplementation to the Cr(VI) strained plants minimized PC3 production which is a rare report so far. Conclusively, gTiO2 NPs have been identified to be promising nano-based nutrition resource for farming applications.

2.
Heliyon ; 10(7): e28204, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38571635

ABSTRACT

This study introduces a series of novel Alkyl thio-1,2,4-triazole (4a-p) and mercapto-1,2,4-triazole (3a-d) compounds derived from nalidixic acid. The synthesis was streamlined, involving interactions between nalidixic acid hydrazide and various isothiocyanates to yield cyclic and alkyl(aryl) sulfide compounds, characterized using 1H NMR, 13C NMR, IR, and elemental analysis. Antioxidant capabilities were quantified through DPPH and ABTS assays, highlighting significant potential, especially for compound 3d, which demonstrated an ABTS IC50 value of 0.397 µM, on par with ascorbic acid (IC50 = 0.87 µM). Antibacterial efficacy was established through MIC assessments against a broad spectrum of Gram-positive and Gram-negative bacteria, including Candida albicans. Compounds 3b, 4e, 4h, 4j, 4i, 4m, and 4o showed broad-spectrum activity, with 4k and 4m exhibiting pronounced potency against E. coli. Molecular docking studies validated the antibacterial potential, with compounds 4f and 4h showing high binding affinities (docking scores of -9.8 and -9.6 kcal/mol, respectively), indicating robust interactions with the bacterial enzyme targets. These scores underscore the compounds' mechanistic basis for their antibacterial action and support their therapeutic promise. Furthermore, compounds 3b, 4i, and 4m, identified through drug-likeness and toxicity predictions, were highlighted for their favorable profiles, suggesting their suitability for oral antibiotic therapies. This comprehensive study, blending synthetic, in vitro, and in silico approaches, emphasizes the triazole derivatives' potential as future candidates for antibiotic and antioxidant applications, particularly spotlighting compounds 3b, 4i, and 4m due to their promising efficacy and safety profiles.

3.
ACS Omega ; 9(12): 13522-13533, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559935

ABSTRACT

Soil pollution from various anthropogenic and natural activities poses a significant threat to the environment and human health. This study explored the sources and types of soil pollution and emphasized the need for innovative remediation approaches. Nanotechnology, including the use of nanoparticles, is a promising approach for remediation. Diverse types of nanomaterials, including nanobiosorbents and nanobiosurfactants, have shown great potential in soil remediation processes. Nanotechnology approaches to soil pollution remediation are multifaceted. Reduction reactions and immobilization techniques demonstrate the versatility of nanomaterials in mitigating soil pollution. Nanomicrobial-based bioremediation further enhances the efficiency of pollutant degradation in agricultural soils. A literature-based screening was conducted using different search engines, including PubMed, Web of Science, and Google Scholar, from 2010 to 2023. Keywords such as "soil pollution, nanotechnology, nanoremediation, heavy metal remediation, soil remediation" and combinations of these were used. The remediation of heavy metals using nanotechnology has demonstrated promising results and offers an eco-friendly and sustainable solution to address this critical issue. Nanobioremediation is a robust strategy for combatting organic contamination in soils, including pesticides and herbicides. The use of nanophytoremediation, in which nanomaterials assist plants in extracting and detoxifying pollutants, represents a cutting-edge and environmentally friendly approach for tackling soil pollution.

4.
Materials (Basel) ; 17(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611966

ABSTRACT

This article describes an affordable method for the synthesis of MnMoO4 nanoflowers through the microwave synthesis approach. By manipulating the reaction parameters like solvent, pH, microwave power, and irradiation duration along this pathway, various nanostructures can be acquired. The synthesized nanoflowers were analyzed by using a powder X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and UV-vis diffuse reflectance spectroscopy (UV-DRS) to determine their crystalline nature, morphological and functional group, and optical properties, respectively. X-ray photoelectron spectroscopy (XPS) was performed for the examination of elemental composition and chemical states by qualitative and quantitative analysis. The results of the investigations demonstrated that the MnMoO4 nanostructures with good crystallinity and distinct shape were formed successfully. The synthesized MnMoO4 nanoflowers were tested for their efficiency as a photocatalyst in the degradation studies of methylene blue (MB) as model organic contaminants in an aqueous medium under visible light, which showed their photocatalytic activity with a degradation of 85%. Through the band position calculations using the electronegative value of MnMoO4, the photocatalytic mechanism of the nanostructures was proposed. The results indicated that the effective charge separation, and transfer mechanisms, in addition to the flower-like shape, were responsible for the photocatalytic performance. The stability of the recovered photocatalyst was examined through its recyclability in the degradation of MB. Leveraging MnMoO4's photocatalytic properties, future studies may focus on scaling up these processes for practical and large-scale environmental remediation.

5.
Int J Med Sci ; 21(4): 593-600, 2024.
Article in English | MEDLINE | ID: mdl-38464834

ABSTRACT

Introduction: Broccoli is a cruciferous vegetable that has been shown to have numerous potential therapeutic benefits because of its bioactive compounds. Methods: In this study, we compared the bioactive efficacy of cooked and uncooked (fresh) stems and florets of broccoli extracted with three different solvents: acetonitrile, methanol, and aqueous extracts. The extraction yield and antioxidant and antibacterial potential of different broccoli extracts were examined. Results: Fresh and boiled floret stem extracts increased the extraction yield. The extraction yields were higher for the methanol and acetonitrile extracts than for the aqueous extracts. The antioxidant efficacy of the different extracts was studied using ABTS, DPPH, and metal ion reduction assays. The acetonitrile and aqueous extracts exhibited higher antioxidant activities than the methanolic extracts in different antioxidant assays. In addition, increased antioxidant activity was observed in fresh florets and boiled broccoli stems. TPC and TFC contents were higher in the methanolic extracts than in the aqueous extracts. Similar to antioxidant activities, anti-inflammatory activities were found to be higher in the acetonitrile and aqueous extracts, particularly in boiled stems and fresh florets. Broccoli extracts have been shown to be active against Bacillus subtilis and moderately effective against Pseudomonas aeruginosa and Staphylococcus aureus. Conclusions: Acetonitrile and aqueous extraction of broccoli might be an ideal choice for extraction methods, which show increased extraction yield and antioxidant and anti-inflammatory potentials. Utilization of phytomolecules from natural sources is a promising alternative approach to synthetic drug development.


Subject(s)
Brassica , Brassica/chemistry , Antioxidants/chemistry , Methanol/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Water , Acetonitriles , Anti-Inflammatory Agents
6.
Article in English | MEDLINE | ID: mdl-38554183

ABSTRACT

The use of nanomaterials in biofuel production from lignocellulosic biomass offers a promising approach to simultaneously address environmental sustainability and economic viability. This review provides an overview of the environmental and economic implications of integrating nanotechnology into biofuel production from low-cost lignocellulosic biomass. In this review, we highlight the potential benefits and challenges of nano-based biofuel production. Nanomaterials provide opportunities to improve feedstock pretreatment, enzymatic hydrolysis, fermentation, and catalysis, resulting in enhanced process efficiency, lower energy consumption, and reduced environmental impact. Conducting life cycle assessments is crucial for evaluating the overall environmental footprint of biofuel production. An economic perspective that focuses on the cost implications of utilizing nanomaterials in biofuel production is also discussed. A comprehensive understanding of both environmental and economic dimensions is essential to fully harness the potential of nanomaterials in biofuel production from lignocellulosic biomass and to move towards sustainable future energy.

7.
Int J Med Mushrooms ; 26(3): 41-53, 2024.
Article in English | MEDLINE | ID: mdl-38505902

ABSTRACT

The worldwide scientific community is well aware that mosquitoes are the sole agents responsible for transmitting various dreadful diseases and critical illnesses caused by vector-borne pathogens. The primary objective of this current research was to evaluate the effectiveness of methanol extract from Tricholoma equestre mushroom in controlling the early life stages of Culex quinquefasciatus Say, Anopheles stephensi Liston, and Aedes aegypti (Linnaeus in Hasselquist) mosquitoes. The larvae, pupae and eggs of these mosquitoes were exposed to four different concentrations (62.5 to 500 ppm). After 120 h of treatment, the methanol extract of T. equestre exhibited ovicidal activity ranging from 66% to 80% against the eggs of the treated mosquitoes. It also demonstrated promising larvicidal and pupicidal activity with LC50 values of 216-300 and 230-309 ppm against the early life stages of all three mosquito species. Extensive toxicity studies revealed that the methanol extract from T. equestre had no harmful effects on non-target organisms. The suitability index (SI) or predator safety factor (PSF) indicated that the methanol extract did not harm Poecilia reticulata Peters 1859, (predatory fish), Gambusia affinis S. F. Baird & Girard 1853, dragonfly nymph and Diplonychus indicus Venkatesan & Rao 1871 (water-bug). Gas chromatography-mass spectrometry (GCMS) analysis identified key compounds, including 3-butenenitrile, 2-methyl-(25.319%); 1-butanol, 2-nitro-(18.87%) and oxalic acid, heptyl propyl ester (21.82%) which may be responsible for the observed activity. Furthermore, the formulation based on the methanol extract demonstrated similar effectiveness against all treated mosquitoes at the laboratory level and was found to be non-toxic to mosquito predators. This groundbreaking research represents the first confirmation that methanol extract from T. equestre could be effectively employed in preventing mosquito-borne diseases through mosquito population control programs.


Subject(s)
Aedes , Agaricales , Anopheles , Culex , Insecticides , Odonata , Animals , Methanol/pharmacology , Mosquito Vectors , Insecticides/pharmacology , Insecticides/chemistry , Plant Extracts/chemistry , Larva , Plant Leaves/chemistry
8.
Vet Parasitol Reg Stud Reports ; 49: 100997, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462302

ABSTRACT

Diseases transmitted by vectors have a significant collision on society and community health, particularly in tropical and subtropical regions, where they can cause large-scale outbreaks shortly after initial transmission. The intent of this investigation was to study the plant extract derived from Sigesbeckia orientalis L. in controlling the immature stages of Anopheles, Culex and Aedes mosquitoes, while also considering its potential toxicity to ecosystems. The immature stages were exposed to different extracts (62.5-500 ppm), and the mortality of larvae and pupae, as well as ovicidal activity, were noted after 24 and 120 h of the experiment. The hexane and ethyl aceate extract of S. orientalis presented 100% ovicidal activity against the eggs of Anopheles, Aedes and Culex at 500 ppm concentration after 5 days of treatment. The hexane and ethylacetate extracts presented strong larvicidal activity with LC50 values of 215.7, 332.0, 197.4 and 212.6, 694.9 and 201.7 ppm against treated mosquitoes at 24 h, respectively. The same extract also presented promising pupicidal activity. The LC50 values of hexane extract were 219.6, 353.6, 194.2 and LC50 values of ethyl acetate were 257.6, 387.8 and 259.07 ppm against early stage pupae of three vector mosquitoes, respectively. The extracts from S. orientalis had strong inhibitory activity against growth and development of mosquitoes. SI/PSF values showed that the extracts of S. orientalis did not harm Poecilia reticulata, Diplonychus indicus (Water bug), Gambusia affinis and dragon fly nymph at tested concentrations. Furthermore, examinations of histopathology and growth disruption revealed significant damage to the midgut cells in the treated larvae. The formulations utilizing hexane and ethyl acetate extracts exhibited potent activity without posing any toxicity towards non-target organisms. This study clearly indicated that hexane and ethylacetate extracts showed promising results against treated mosquitoes. The present study documents the first report of the extracts from S. orientalis and they can be further assessed to identify compounds for application purposes.


Subject(s)
Acetates , Aedes , Anopheles , Culex , Insecticides , Animals , Hexanes/pharmacology , Sigesbeckia , Ecosystem , Insecticides/pharmacology , Insecticides/chemistry , Mosquito Vectors , Larva
9.
Article in English | MEDLINE | ID: mdl-38512495

ABSTRACT

In the current study, the bottlebrush [Callistemon viminalis (Sol. ex Gaertn.) G. Don] plant was selected for the green synthesis of silver (Ag) and gold (Au) nanoparticles and to evaluate its antibacterial and antifungal activities. Phytochemical screening of C. viminalis confirmed the presence of alkaloids, anthraquinones, saponins, tannins, betacyanins, phlobatanins, coumarins, terpenoids, steroids, glycosides, and proteins. To characterize the synthesized Ag and Au NPs, UV-Visible spectroscopy, FTIR spectroscopy for functional group identification, field emission scanning electron microscopy (FE-SEM) for particle size, and elemental analysis were performed using EDX. The UV-Visible absorption spectra of the green-synthesized Ag and Au nanoparticles were found to have a maximum absorption band at 420 nm for Ag NPs and 525 nm for Au NPs. FE-SEM analysis of the synthesized NPs revealed a circular shape with a size of 100 nm. Elemental analysis was performed for the synthesis of Ag and Au NPs, which confirmed the purity of the nanoparticles. The greenly synthesized Ag and Au NPs were also evaluated for their anti-bacterial and anti-fungal activities, which exhibited prominent inhibition activities against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Candida albicans, C. krusei, Aspergillus sp., and Trichoderma species. The highest zone of inhibition 15.5 ± 0.75 and 15 ± 0.85 mm was observed for Ag NPs against E. coli and P. aeruginosa. Similarly, Trichoderma sp. and Aspergillus sp. were inhibited by Ag NPs up to 13.5 ± 0.95 and 13 ± 0.70 mm. This work will open doors for the development of new antimicrobial agents using green chemistry.

10.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334124

ABSTRACT

Diabetes mellitus (DM) is a multifactorial life-threatening endocrine disease characterized by abnormalities in glucose metabolism. It is a chronic metabolic disease that involves multiple enzymes such as α-amylase and α-glucosidases. Inhibition of these enzymes has been identified as a promising method for managing diabetes, and researchers are currently focusing on discovering novel α-amylase and α-glucosidase inhibitors for diabetes therapy. Hence, we have selected 12 bioactive compounds from the Momordica charantia (MC) plant and performed a virtual screening and molecular dynamics investigation to identify natural inhibitors of α-amylase and α-glucosidases. Our in silico result revealed that phytocompound Rutin showed the highest binding affinity against α-amylase (1HNY) enzymes at (-11.68 kcal/mol), followed by Karaviloside II (-9.39), Momordicoside F (-9.19), Campesterol (-9.11. While docking against α-glucosidases (4J5T), Rutin again showed the greatest binding affinity (-11.93 kcal/mol), followed by Momordicine (-9.89), and Campesterol (-8.99). Molecular dynamics (MD) simulation research is currently the gold standard for drug design and discovery. Consequently, we conducted simulations of 100 nanoseconds (ns) to assess the stability of protein-ligand complexes based on parameters like RMSD, RMSF, RG, PCA, and FEL. The significance of our findings indicates that rutin from MC might serve as an effective natural therapeutic agent for diabetes management due to its strongest binding affinities with α-amylase and α-glucosidase enzymes. Further research in animals and humans is essential to validate the efficacy of these drug molecules.Communicated by Ramaswamy H. Sarma.

11.
Microb Pathog ; 189: 106602, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408546

ABSTRACT

The current research was designed to investigate the antibacterial activity of probiotic bacteria mediated cadmium oxide nanoparticles (CdO NPs) on common fish pathogenic bacteria like Serratia marcescens, Aeromonas hydrophila, Vibrio harveyi, and V. parahaemolyticus. CdO NPs were synthesized using probiotic bacteria as follows: Lactobacillus species with different precursor of cadmium sulfate concentrations (5, 10, and 20 mM). The average crystalline sizes of the CdO NPs were determined based on the XRD patterns using the Debye-Scherrer equation for different precursor concentrations. Specifically, sizes of 40, 48, and 67 nm were found at concentrations of 5, 10, and 20 mM, respectively. The antibacterial efficacy of CdO NPs was estimated using a well diffusion assay, which demonstrated the best efficacy of 20 mM CdO NPs against all pathogens. AFM analysis of nanoparticle-treated and untreated biofilms was performed to further validate the antibacterial effect. Antibacterial activity of CdO nanoparticles synthesized at varying concentrations (5, 10, and 20 mM) against fish pathogens (S. marcescens, A. hydrophila, V. harveyi, and V. parahaemolyticus). The results indicated the highest inhibitory effect of 20 mM CdO NPs across all concentrations (30, 60, and 90 µg/mL), demonstrating significant inhibition against S. marcescens. These findings will contribute to the development of novel strategies for combating aquatic diseases and advancing aquaculture health management practices.


Subject(s)
Cadmium Compounds , Metal Nanoparticles , Nanoparticles , Animals , Oxides/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria , Fishes , Metal Nanoparticles/chemistry
12.
Exp Parasitol ; 258: 108709, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301765

ABSTRACT

Mosquitoes stand out as the most perilous and impactful vectors on a global scale, transmitting a multitude of infectious diseases to both humans and other animals. The primary objective of the current research was to assess the effectiveness of EOs from Ocimum tenuiflorum L. and Ocimum americanum L. in controlling Anopheles stephensi Liston. Culex quinquefasciatus Say and Aedes aegypti L. mosquitoes. The larvae, pupae and eggs of the mosquitoes were exposed to four different concentrations (6.25-50 ppm). The tested EOs resulted in >99-100 % mortality at 120 h for the eggs of all examined mosquito species. It also showed robust larvicidal and pupicidal activity with LC50 and LC90 values of 17-39, 23-60 ppm and 46-220, and 73-412 ppm against Aedes, Culex and Anopheles mosquito species, respectively, at 24 h of treatment. The Suitability Index or Predator Safety Factor demonstrated that the EOs extracted from O. tenuiflorum L. and O. americanum L. did not cause harm to P. reticulata, D. indicus (water bug), G. affinis and nymph (dragonfly). GC-MS analysis identified the major probable constituents of the oil, including Phenol, 2-Methoxy-4-(1-Propenyl)- (28.29 %); 1-Methyl-3-(1'-Methylcyclopropyl) Cyclopentene (46.46 %); (E,E,E)-3,7,11,15-Tetramethylhexadeca-1,3,6,10,14-Pentaene (18.91 %) and 1,3-Isobenzofurandione, 3a,4,7,7a-Tetrahydro-4,7-Dimethyl (33.02 %). These constituents may play a significant role in the mosquitocidal activity of the oil. The same results were identified in the formulation prepared from the EOs. This marks the first report confirming the successful utilization of EOs derived from O. tenuiflorum L. and O. americanum L. in mosquito population control initiatives.


Subject(s)
Aedes , Anopheles , Culex , Insecticides , Ocimum , Odonata , Oils, Volatile , Animals , Humans , Oils, Volatile/pharmacology , Oils, Volatile/analysis , Ocimum/chemistry , Ocimum sanctum , Mosquito Vectors , Insecticides/analysis , Larva , Plant Extracts/chemistry , Plant Leaves/chemistry
14.
Plant Physiol Biochem ; 207: 108370, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38271861

ABSTRACT

Nanotechnology provides distinct benefits to numerous industrial and commercial fields, and has developed into a discipline of intense interest to researchers. Nanoparticles (NPs) have risen to prominence in modern agriculture due to their use in agrochemicals, nanofertilizers, and nanoremediation. However, their potential negative impacts on soil and water ecosystems, as well as plant growth and physiology, have caused concern for researchers and policymakers. Concerns have been expressed regarding the ecological consequences and toxicity effects associated with nanoparticles as a result of their increased production and usage. Moreover, the accumulation of nanoparticles in the environment poses a risk, not only because of the possibility of plant damage but also because nanoparticles may infiltrate the food chain. In this review, we have documented the beneficial and detrimental effects of NPs on seed germination, shoot and root growth, plant biomass, and nutrient assimilation. Nanoparticles exert toxic effects by inducing ROS generation and stimulating cytotoxic and genotoxic effects, thereby leading to cell death in several plant species. We have provided possible mechanisms by which nanoparticles induce toxicity in plants. In addition to the toxic effects of NPs, we highlighted the importance of nanomaterials in the agricultural sector. Thus, understanding the structure, size, and concentration of nanoparticles that will improve plant growth or induce plant cell death is essential. This updated review reveals the multifaceted connection between nanoparticles, soil and water pollution, and plant biology in the context of agriculture.


Subject(s)
Ecosystem , Nanoparticles , Plant Development , Nanoparticles/toxicity , Photosynthesis , Agriculture , Plants , Soil
15.
Int J Biol Macromol ; 259(Pt 1): 129264, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199548

ABSTRACT

Biocomposites based on starch- gum acacia- agar, chitosan- starch- agar, starch- poly vinyl alcohol- agar were synthesized by simple, green route principles and the various characterization techniques like fourier infrared spectroscopy, SEM revealed the highly stable micro dimenstional that specially interacted with functional groups of polymers -herbicidal metabolites. Respective biocomposite was prepared by mixing equal volume of the selected polymer (1;1;1 ratio) with known concentration (100 mg of in distilled water followed by the addition of reconstituted herbicidal metabolites (100 mg or 0.1 g). Though all the biocomposites were capable of inducing herbicidal effect, notable impact was recorded in chitosan- starch- gum acacia treatment. In this case, the necrotic lesions were initiated at the early incubation period (6 h), progressively developing into dark brownish black lesions with 30.0 mm diameter. Release profile of the metabolites from the respective composite was also under in vitro and soil assay. Release profile study under in vitro and soil condition showed the sustained or controlled manner in distilled water and ethyl acetate treatment. No sign of toxic effect on the soil, parameters plant growth, rhizobacteria and peripheral blood cells clearly revealed the best biocompatibility of the presently proposed biocomposite.


Subject(s)
Chitosan , Herbicides , Chitosan/chemistry , Starch/chemistry , Gum Arabic , Agar , Polymers , Water , Soil
17.
Mol Neurobiol ; 61(3): 1237-1270, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37698833

ABSTRACT

A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD.


Subject(s)
Biological Products , Huntington Disease , Neuroprotective Agents , Rats , Animals , Huntington Disease/metabolism , Rats, Wistar , Acetylcholinesterase , Antioxidants/pharmacology , Antioxidants/therapeutic use , Biological Products/therapeutic use , Nitro Compounds/pharmacology , Propionates/pharmacology , Propionates/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Disease Models, Animal
18.
Biomed Pharmacother ; 170: 116034, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38141282

ABSTRACT

The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health.


Subject(s)
Curcumin , Neoplasms , Humans , Curcumin/pharmacology , Curcumin/therapeutic use , Curcumin/chemistry , Neoplasms/drug therapy , Anti-Inflammatory Agents/therapeutic use , Signal Transduction , Inflammation/drug therapy
19.
Saudi Pharm J ; 31(12): 101880, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38075545

ABSTRACT

Atherosclerosis is a complex condition that develops at varying rates in multiple configurations and blood vessels. The primary cause of morbidity and mortality worldwide, particularly in the industrialized nations, continues to be atherosclerosis. Ayurveda, Siddha, and Unani systems of medicine, among other traditional medical systems, utilize polyherbal compositions. The treatment of atherosclerosis has been improved with a novel multibotanical combination. In this study, we sought to formulate, characterize, and standardize a polyherbal formulation based on design of experiments (DoE), densitometric studies and to predict for antioxidant activity using molecular docking analysis based on LC- MS identified phytomarkers. In addition we have assessed its cell viability by MTT assay along with Ao/EtBr staining technique and intracellular ROS assay using THP-1 cell lines. Reported findings showed that the HPTLC based quantified components of selected multiherbals has the ability to treat for atherosclerosis. This document could be used to quickly authenticate the formulation as the method optimized was based on CCD design which shows desirability of 0.962 and 0.839. Cell based assays scientifically proves that the formulation was not toxic based on MTT assay along with AO/EtBr staining technique and has excellent antioxidant activities based on intracellular ROS assay using THP-1 cell lines. The observed findings would be crucial for future clinical aspects since the bioactive molecules contained in the extracts may have anticipated effects with other compounds and show a superior therapeutic potential. As a result, this study offers standardized and potentially therapeutic information about effective polyherbal formulation for atherosclerosis.

20.
Nanomaterials (Basel) ; 13(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38133025

ABSTRACT

Selenium nanoparticles (Se NPs) have a number of unique properties that determine the use of the resulting nanomaterials in various fields. The focus of this paper is the stabilization of Se NPs with cetyltrimethylammonium chloride (CTAC). Se NPs were obtained by chemical reduction in an aqueous medium. The influence of the concentration of precursors and synthesis conditions on the size of Se NPs and the process of micelle formation was established. Transmission electron microscopy was used to study the morphology of Se NPs. The influence of the pH of the medium and the concentration of ions in the sol on the stability of Se micelles was studied. According to the results of this study, the concentration of positively charged ions has a greater effect on the particle size in the positive Se NPs sol than in the negative Se NPs sol. The potential antibacterial and fungicidal properties of the samples were studied on Escherichia coli, Micrococcus luteus and Mucor. Concentrations of Se NPs stabilized with CTAC with potential bactericidal and fungicidal effects were discovered. Considering the revealed potential antimicrobial activity, the synthesized Se NPs-CTAC molecular complex can be further studied and applied in the development of veterinary drugs, pharmaceuticals, and cosmetics.

SELECTION OF CITATIONS
SEARCH DETAIL
...